Global parametric solutions of scalar transport

نویسندگان

  • Daniel R. Lester
  • Murray Rudman
  • Guy Metcalfe
  • Hugh M. Blackburn
چکیده

Passive scalar transport involves complex interactions between advection and diffusion, where the global transport rate depends upon scalar diffusivity and the values of the (possibly large) set of parameters controlling the advective flow. Although computation of a single solution of the advection–diffusion equation (ADE) is simple, in general it is prohibitively expensive to compute the parametric variation of solutions over the full parameter space Q, even though this is crucial for, e.g. optimization, parameter estimation, and elucidating the global structure of transport. By decomposing the flows within Q so as to exploit symmetries, we derive a spectral method that solves the ADE over Q three orders of magnitude faster than other methods of similar accuracy. Solutions are expressed in terms of the exponentially decaying natural periodic patterns of the ADE, sometimes called ‘‘strange eigenmodes’’. We apply the method to the experimentally realisable rotated arc mixer chaotic flow, both to establish numerical properties and to calculate the fine-scale structure of the global solution space for transport in this chaotic flow. Over 10 solutions within Q are resolved, and spatial pattern locking, a symmetry breaking transition to disordered spatial patterns, and fractally distributed optima in transport rate are observed. The method exhibits exponential convergence, and efficiency increases with resolution of Q. Crown Copyright 2007 Published by Elsevier Inc. All rights reserved. PACS: 47.52.+j; 47.54. r; 47.20.Ky; 47.51.+a

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diffusion of a passive scalar by convective flows under parametric disorder

We study transport of a weakly diffusive pollutant (a passive scalar) by thermoconvective flow in a fluid-saturated horizontal porous layer heated from below under frozen parametric disorder. In the presence of disorder (random frozen inhomogeneities of the heating or of macroscopic properties of the porous matrix), spatially localized flow patterns appear below the convective instability thres...

متن کامل

A Comparative Review of Global Transportation Energy Outlook

In 2010, the global transport sector consumed about 2,200 million tons of oil equivalent. About 96% of this amount came from oil. It shows that more than 60% of the oil consumed globally goes to the transportation sector. Road transport accounts for the bulk of the transportation energy consumption. The light-duty vehicles (LDVs), including light trucks, light commercial vehicles, and minibuses...

متن کامل

Investigation of Scalar Modulation Instability in the Presence of Raman Scattering in Photonic Crystal Fibers

In this paper, by including Raman scattering in the coupled-mode equations, the scalar modulation instability in photonic crystal fibers is investigated. The evolution of the pump, Stokes and anti-Stokes waves along the fiber as well as the conversion efficiency for two cases, with and without Raman effect, are studied. The effect of anti-Stokes seed and the pump depletion on the evolution of S...

متن کامل

Simulating Pathogen Transport with in a Naturally Ventilated Hospital Ward

Understanding how airborne pathogens are transported through hospital wards is essential for determining the infection risk to patients and healthcare workers. This study utilizes Computational Fluid Dynamics (CFD) simulations to explore possible pathogen transport within a six-bed partitioned Nightingalestyle hospital ward. Grid independence of a ward model was addressed using the Grid Converg...

متن کامل

A lattice Boltzmann approach for solving scalar transport equations.

A lattice Boltzmann (LB) approach is presented for solving scalar transport equations. In addition to the standard LB for fluid flow, a second set of distribution functions is introduced for transport scalars. This LB approach fully recovers the macroscopic scalar transport equation satisfying an exact conservation law. It is numerically stable and scalar diffusivity does not have a Courant-Fri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 227  شماره 

صفحات  -

تاریخ انتشار 2008